SHORTER COMMUNICATIONS

NON-LINEAR DIFFUSION PROBLEMS WITH VARIABLE DIFFUSIVITY AND TIME-DEPENDENT FLUX BOUNDARY CONDITIONS

MUTSUMI SUZUKI and SIRO MAEDA Department of Chemical Engineering, Tohoku University, Sendai, Japan

(Receired 19 June 1971)

- C, concentration $\lceil \text{kg/m}^3 \rceil$;
- $\overline{C}_{i}, \overline{D},$ initial concentration $\left[\text{kg}/\text{m}^3\right]$;
- diffusivity $[m^2/s]$:
- dimensionless diffusivity **;**
- & E, F, L,
L, L, relative change of diffusivity **:**
- function :
- coefficient :
- characteristic length [m] ;
- m exponent ;
- \overline{T} , dimensionless time :
- t, time $[s]$;
- U , dimensionless concentration :
- x. dimensionless corodinate;
- \mathbf{x} . coordinate $[m]$.

Greek symbols

- η , similarity variable;
 κ **parameter of nonline**
- parameter of nonlinearity.

NON-LINEAR diffusion equations with concentrationdependent diffusion coefficient and corresponding heat conduction equations with temperature-dependent thermal properties arise in a number of physical and engineering problems. Some classes of such problems subject to the second kind boundary conditions (flux boundary conditions) have been studied by a few authors and some analytical solutions are known [1-3]. These analytical procedures, however, are valid only for the problems with constant flux boundary conditions.

The present paper establishes a general method of obtaining exact analytical solutions for a certain class of the nonlinear and variable flux type diffusion problems.

THEORETICAL TREATMENT

We are concerned with the non-linear diffusion problem with variable diffusivity in a semi-infinite medium;

$$
\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[D(C) \frac{\partial C}{\partial x} \right], \quad 0 \le x < \infty \tag{1}
$$

where C is the concentration of the diffusing substance, t the time, x the coordinate and D the diffusivity which is a positive function of the concentration. The initial and boundary conditions considered are:

$$
C = C_i \quad \text{at} \quad t = 0
$$

$$
D \frac{\partial C}{\partial x} = k \cdot t^{m/2} \quad \text{at} \quad x = 0
$$
 (2)

where k is an arbitrary constant and m is a positive integer or zero.

~O~~~CLATLIR~ Let us introduce the following tr~~nsf(~rlnati(~ns*

$$
U = \frac{D(C_i)^{m/2}}{k \cdot I^{m+1}} \int_C^{C_i} D(C) dC
$$

\n
$$
T = D(C_i)t/L^2
$$

\n
$$
X = x/L
$$

\n
$$
Y = D(C)/D(C_i)
$$
\n(3)

where, functional form of the dimensionless diffusivity $\mathcal{C}(U)$ depends directly on that of the original diffusivity $D(C)$. In most cases of practical importance, however, it has been shown that the dimensionless diffusivity can be represented by a simple polynomial series of U and a certain parameter κ **[3].** When the diffusivity D(C), for instance, is described by an exponential function, the dimensionless diffusivity φ then becomes :

$$
\mathcal{Q}(U) = 1 - \kappa \cdot U \tag{4}
$$

where the non-linearity parameter κ is defined by:

$$
\kappa = \frac{k \cdot E^{n+1}}{C_i \cdot D(C_i)^{m/2+1}} \ln E
$$

\n
$$
E = D(C_i)/D(C=0).
$$
 (5)

Equations (1) and (2) then become:

$$
\begin{cases}\n\frac{\partial U}{\partial T} = \frac{\partial^2 U}{\partial X^2} - \kappa \cdot U \frac{\partial^2 U}{\partial X^2} \\
U = 0 \quad \text{at} \quad T = 0 \\
\frac{\partial U}{\partial X} = -T^{m/2} \quad \text{at} \quad X = 0.\n\end{cases}
$$
\n(6)

The perturbation solution for this non-linear equation is described as:

$$
U = U_1 + \kappa \cdot U_2 + \kappa^2 \cdot U_3 + \dots \tag{7}
$$

Applying the similarity analysis and the group invariant theory $[3]$, one can derive that:

$$
U_j(T, X) = T^{(m+1)j/2} \cdot F_j(\eta), \ j = 1, 2, 3, \dots
$$

\n
$$
\eta = X/2 \sqrt{T}.
$$
 (8)

Substituting equations (8) and (7) into (6) and collecting coefficients of like powers of the parameter κ , one can obtain the following simultaneous ordinary differential equations for the unknown similarity functions \vec{F}_i as:

$$
F''_1 + 2\eta F'_1 - 2(m+1)F_1 = 0
$$

\n
$$
F''_2 + 2\eta F'_2 - 4(m+1)F_2 = F_1 F''_1
$$

\n
$$
F''_3 + 2\eta F'_3 - 6(m+1)F_3 = F_1 F''_2 + F_2 F''_1.
$$
\n(9)

*Where, L is a characteristic length, unit length for instance.

FIG. 1. Similarity functions F_f .

The boundary conditions for these differential equations are derived from the conditions in equation (6) as:

$$
F'_1(0) = -2
$$

\n
$$
F'_2(0) = F'_3(0) = F'_4(0) = \dots = 0
$$

\n
$$
F_1(\infty) = F_2(\infty) = F_3(\infty) = \dots = 0.
$$
\n(10)

This system of the two point boundary value problems of the simultaneous linear ordinary differential equations can be easily solved by an analytical or numerical method. The dimensionless concentration U , then can be evaluated by making use of equation (8) and (7). The concentration distribution $C(t, x)$ can be evaluated by the inverse of the transformation (3). When the attention is focused on the change of the concentration at the surface $(x = 0)$, we need the numerical values of F_j only at the origin ($\eta = 0$).

Some examples of the similarity functions F_j and corresponding calculated results of the surface concentration changes are shown in Fig. 1, Table 1 and Fig. 2.

REFERENCES

- 1. J. H. Knight and J. R. Philip, Exact solutions in non-linear diffusion, J. Engng Maths 8, 219-227 (1974).
- 2. M. Storm, Heat conduction in simple metals, $J.$ Appl. Phys. 22,940-951 (1951).
- 3. M. Suzuki, S. Matsumoto and S. Maeda, New analytical method for a non-linear diffusion problem, *Int. J.* Heut Mass *Transfer* 20, 883-889 (1977).

FIG. 2. Change of the surface concentration.